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Abstract. The peculiarities of absorption spectra oflow-density fluid mercury are connected 
with fluctuation clusters. The form of the fundamental absorption edge depends on the 
cluster distribution. The exponential edge is spread out because of the large-scale density 
fluctuations near the critical p i n t .  

Below the critical density, fluid mercury has a characteristic absorption spectrum of a 
dielectric, namely a transparency window and an exponential absorption edge at low 
photon energies. At low densities the transparency window width can be extrapolated 
to theresonance excitationewrgyofamercuryatom[l, 21, indicatingthat theabsorption 
edge forms because the atom levels shift and broaden. As the density increases, the 
absorption edge gradually closes the transparency window (figure 1, [2]). 

The apparent closing of the transparency window could be connected with the 
transition of fluid mercury to a metallic state. However, in mercury a Mott transition is 
well above the critical density [3]; consequently its influence is indirect. It has been 
shown that small quanta are absorbed by the fluctuation clusters, i.e. the atom density 
fluctuations [4]. 

Some insight can be gained by considering a quasiatomic structure and a polarization 
energy shift [5]. First of all, a cluster can be generally considered as an atomic fluid. 
However, the valence electron shells overlap and screen each other from the ions; so a 
notion of quasiatoms has to be used [6] .  Low states of a quasiatom valence electron 
have a small admixture of free motion above a screened potential. Quasiatoms have a 
continuous internal-energy spectrum just above the ground-state level of free atoms. 
The other energy zone arises above the resonance level (figure 2). 

The second point is a shift of the bottom of the resonance energy band with respect 
to the ground-state zone. It is mainly caused by polarization of some atoms in the 
Coulomb field of the ionic core of an excited atom. In a quasiclassical state the Coulomb 
field is fully screened near the boundary of the classical accessible region. Therefore 
atoms are polarized only within this sphere. The radius of the polarization sphere is 

rPd = ez / ( I  - E )  (1) 
where e is the electron charge, I is the ionization potential and E is the resonance 
excitationenergy. Substituting in (1) the energyvalues, one can see that the polarization 
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Figure 1. Experimental absorption spectra [Z] of 
Ruid mercury at T = 1754 K as a function of den- 
sity (ATIT, = 2.3 X 10.’). The critical para- 
metersare T,= 1751 Kandp,  = 5.8gcm”. 

radius is three times the ground-state radius of a mercury atom. So some atoms in the 
ground state are expected to be in the polarization sphere of an excited atom. The 
polarization shif! increases directly as their number increases. 

The gap between the bottom of the ground-state zone and the resonance energyzone 
is then 

A , = E - s ~  (2) 
where s is the number of atoms within the polarization sphere and q is the mean 
polarizationenergyofthe atoms. Thus the gapdependsmainlyon the numbers, whereas 
the dispersion around 9 is small. The random clusters obey the Poisson distribution 

where n, is the atom density and Q,, tsthe volume of the polarization sphere. Of course, 
correlation can influence the probability distribution. Such an effect will be shown to be 
important near the critical point. 

The small quanta b o  < E  are mainly absorbed owing to transitions between the 
ground-state zone and the bottom of the resonance zone. Consider, at first, the trans- 
itions initiated from the bottom of the ground-state zone for no = As. These transitions 
occur when the number of atoms in the polarization sphere is 

S“ = ( E  - bw)/9. (4) 
It follows that the smaller quanta can be absorbed by the larger clusters. According to 
the Poisson distribution, the number of large clusters falls exponentially. Therefore the 
absorption coefficient falls exponentially as the quantum value decreases. 

In general, an initial state in the ground-state zone has the excitation energy E,, 
and so its population is proportional to exp(-&,/T), where Tis  the temperature, in 
accordance with the Boltzmann distribution. Because of the resonance condition E~ = 
A, - b o ,  the Boltzmann factor is proportional to exp(hw/r); therefore at any s < s o  
the absorption falls exponentially when the quantum value decreases as well. This is the 
reason for the exponential edge. 

Near the critical point a plateau in the absorption spectra has been observed in 
addition to the exponential edge (figure 1). It seems to be another process, e.g. the 
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Figure 2. Energy zones of quasiatoms. Figure 3. Probability distribution of clusters 

absorption by the free electrons [7]. Because the electrical conductivity is small, this has 
met with difficulties. Another supposition, namely absorption by the excess electrons in 
the atomic clusters, is generally accepted [SI. However, it was not really verified by 
comparison between theory andexperiments. Thisinterpretation is not necessarily true. 
It will be shown that the plateau of the absorption spectra can be explained without 
assuming excess electrons in the clusters. 

So far, the explanations have not taken account of the proximity of the critical point. 
As is well known, near the critical point, large-scale fluctuations increase anomalously. 
Critical fluctuations radically change the cluster distribution. This might be one reason 
for the absorption edge spread, i.e. plateau formation. Thus critical tiuctuations can 
influence the broaden resonance absorption. It is worth noting that scattering of light 
(critical opalescence) plays a minor role. 

In the vicinity of the critical point, long-range density fluctuations arise, i.e. a fluid 
is not homogeneous on a small scale. The maximum size of the fluctuations is the 
correlation radius r,, which diverges at the critical point. When rpol < r,, the cluster 
distribution has two maxima as is expected for a two-phase system 191. At the critical 
point, as the maxima are linked together, the cluster distribution has a plateau. Such 
distributions have been studied for a lattice gas model [lo]. Not too close to the critical 
point, these are similar to the Poisson distribution with a shoulder on the decreasing 
branch (figure 3). The shoulder width is limited by the finite size of atoms. 

The absorption spectrum is formed by overlapping bands of different clusters. The 
shoulder of the cluster distribution gives rise to the plateau in the absorption spectrum 
in the corresponding range (equation (4)): 

K, = 2n2(e”/mclfo,(h/q)P,hn, (5 )  
where m is the electron mass, cis the velocity of light andf,, is the oscillator strength of 
the resonance transition. The factor A / q  is the density of the bands. For rough estimates 
of Prh equation (3) can be used fors = (e - Rwo)/q, where hwo is the limit of the edge. 

A phenomenological descriptioncan be basedon the fluctuation theory of the critical 
point.Thecritica1fluctuationsaredescribedby the totalorderparameter[9]. Itsmodulus 
i.e. the root mean square value, is 

1/2 

@ c =  0, ([n(r) - n,][n(r‘) - n,])drdr‘) r:”+l-’J’’ (6 )  

where n(r) is the local density, ne is the critical density and the integration is over the 
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correlation volume 8.. The exponent on the right-hand side is the fractal dimensionality 
of the density fluctuations; there the space dimensionality d = 3 and the critical index 7 
of thecorrelation radiusis0.05. By definition, 4crepresents thevariation in the number 
of atoms in the correlation volume. As the point of phase transition is approached along 
the critical isochor, the liquid phase occurs and the order parameter appears to be not 
zero simultaneously. So, OC can be used as a measure of the quantity of liquid phase 
within the correlation volume. 

One can suppose that the shoulder level of the cluster distribution is proportional to 
the modulus of the total order parameter: 

for the following reasons. If rwI and r, are of the same order of magnitude (rpt" rJ ,  
~,canbeusedasameasureofthequantityofliquidphase\*ithinthepolarizationsphere 
as well. It follows that 

Because the shoulder width is limited, frh vanes directly as 
When r, is much greater than rpol, the dependence of the probability Prh upon QC 

saturates. At the critical point, r, and diverge, whereas Ph approaches a finite limit. 
So, a finite variation in the function Prh(Qc) is spread over an infinite interval of the 
argument. In this case the proportionality relation (7) take place even though r, exceeds 
rpol. 

We arc in a position now to express the probability Prh through the thermodynamic 
variables. According to  theory of phase transitions, in an external field h the correlation 
volume acquires the additional energy -hecP,. A strong external field thus influences the 
fluctuations. The modulus of the total order parameter is then mC = TJh, where T, is 
the critical temperature. In the critical-point theory, the formal external field h is given 
by the expression Ap - b AT,  where A p  and ATare the pressure and the temperature 
minustheircritica1values.Farfromtheline.h = Ap - b AT = 0, i.e. thecriticalisochor 
and the boundary of the two-phase region, we have 

(equation (7)). 

Qc = ncTJIAp - b AT]. (8) 

Substituting(8) in(7), wehaveonthecriticalisothermandnot tooclose to thecritical 
point 

Psh = IApl-' = ]An]-' (9) 

where An is the difference between the density and its critical value, and the critical 
index 6 = 4.8. The second proportionality follows from the definitions [ll]. 

As stated above, the plateau of the absorption spectra varies as the shoulder of the 
cluster distributions. Therefore the absorptioncoefficient is described by the same power 
law (9). 

Recently, the absorption spectra of fluid mercury near the critical isotherm have 
been measured at densities below the critical density [Z]. These data are compared with 
the scaling law in figure 4 and are shown to agree. The estimate of the absorption 
coefficient from equation (5) also seems to be reasonable even though only indirect 
estimationofPshcanbeused(asp = 4 g ~ m ' ~ a n d s ~  = 15,PSh = 10-6andK, ~ 5 c m - l ) .  
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5 1.4 -7',6m - l g  IAnl respond to the law K,  cc 6 = 4.8. 

r' - 
m - 

1.2 Figure 4. 'Che absorption coefikient of the pho- 
tons fio = 0.6eV (0) and h o  = 0.75 eV (0) by 
BuidmercuryatT = 1754 K.Thepointshavebeen 
taken from figure 1; the slopes of the lines cor- 0.55 0.60 

Usingan expansionofthescalingequation ofstate, one canconsider the temperature 
dependence of the absorption coefficient. Near the critical isotherm we have 

Psb 0~ IAnl-6(1 - A  ATlAnl-'/6 + . . .) (10) 
where the critical index /3 of the order parameter is 0.34; A is a positive amplitude. It 
follows from (10) that 

and the same law holds for the logarithm derivative of the absorption coefficient. So, 
the absorption coefficient increases as the temperature is lowered. It can be seen 
from (11) that the temperature dependence becomes greater as the critical point is 
approached. Additional experimental data are needed for a quantitative comparison 
with (11). 

In conclusion, the resonance absorption due to transitions between the two energy 
zones was considered. The exponential absorption edge in fluid mercury is spread out 
by the critical fluctuations. Scaling laws are proposed for the absorption coefficient near 
the exponential edge. 
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